2,790 research outputs found

    Tight Finite-Key Analysis for Quantum Cryptography

    Get PDF
    Despite enormous progress both in theoretical and experimental quantum cryptography, the security of most current implementations of quantum key distribution is still not established rigorously. One of the main problems is that the security of the final key is highly dependent on the number, M, of signals exchanged between the legitimate parties. While, in any practical implementation, M is limited by the available resources, existing security proofs are often only valid asymptotically for unrealistically large values of M. Here, we demonstrate that this gap between theory and practice can be overcome using a recently developed proof technique based on the uncertainty relation for smooth entropies. Specifically, we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show that security against general attacks can be guaranteed already for moderate values of M.Comment: 11 pages, 2 figure

    Simultaneous NIR/sub-mm observation of flare emission from SgrA*

    Get PDF
    We report on a successful, simultaneous observation and modeling of the sub-millimeter to near-infrared flare emission of the Sgr A* counterpart associated with the super-massive black hole at the Galactic center. Our modeling is based on simultaneous observations that have been carried out on 03 June, 2008 using the NACO adaptive optics (AO) instrument at the ESO VLT and the LABOCA bolometer at the APEX telescope. Inspection and modeling of the light curves show that the sub-mm follows the NIR emission with a delay of 1.5+/-0.5 hours. We explain the flare emission delay by an adiabatic expansion of the source components.Comment: 12 pages, 9 figures, 3 tables, in press with A&

    Moments of Inertia of Nuclei in the Rare Earth Region: A Relativistic versus Non-Relativistic Investigation

    Full text link
    A parameter free investigation of the moments of inertia of ground state rotational bands in well deformed rare-earth nuclei is carried out using Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic fields are determined by the non-linear Lagrangian with the NL1 force and the pairing interaction by the central part of finite range Gogny D1S force. In CHFB theory, the properties in particle-hole and particle-particle channels are defined solely by Gogny D1S forces. Using an approximate particle number projection before variation by means of the Lipkin Nogami method improves the agreement with the experimental data, especially in CRHB theory. The effect of the particle number projection on the moments of inertia and pairing energies is larger in relativistic than in non-relativistic theory.Comment: 18 pages + 2 PostScript figure

    The Fundamental Diagram of Pedestrian Movement Revisited

    Full text link
    The empirical relation between density and velocity of pedestrian movement is not completely analyzed, particularly with regard to the `microscopic' causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the normal movement of pedestrians along a line (single-file movement). This article presents experimental results for this system under laboratory conditions and discusses the following observations: The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-file movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation at the density domain 1m2<ρ<5m21 m^{-2}<\rho<5 m^{-2}. In addition we test a procedure for automatic recording of pedestrian flow characteristics. We present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure

    Martini 3 Coarse-Grained Force Field for Carbohydrates

    Get PDF
    The Martini 3 force field is a full re-parametrization of the Martini coarse-grained model for biomolecular simulations. Due to the improved interaction balance it allows for more accurate description of condensed phase systems. In the present work we develop a consistent strategy to parametrize carbohydrate molecules accurately within the framework of Martini 3. In particular, we develop a canonical mapping scheme that decomposes arbitrarily large carbohydrates into a limited number of fragments. Bead types for these fragments have been assigned by matching physicochemical properties of mono- and disaccharides. In addition, guidelines for assigning bonds, angles, and dihedrals are developed. These guidelines enable a more accurate description of carbohydrate conformations than in the Martini 2 force field. We show that models obtained with this approach are able to accurately reproduce osmotic pressures of carbohydrate water solutions. Furthermore, we provide evidence that the model differentiates correctly the solubility of the poly-glucoses dextran (water soluble) and cellulose (water insoluble, but soluble in ionic-liquids). Finally, we demonstrate that the new building blocks can be applied to glycolipids, being able to reproduce membrane properties and to induce binding of peripheral membrane proteins. These test cases demonstrate the validity and transferability of our approach

    Multiwavelength VLBI observations of Sagittarius A*

    Full text link
    The compact radio source Sgr\,A*, associated with the super massive black hole at the center of the Galaxy, has been studied with VLBA observations at 3 frequencies (22, 43, 86\,GHz) performed on 10 consecutive days in May 2007. The total VLBI flux density of Sgr\,A* varies from day to day. The variability is correlated at the 3 observing frequencies with higher variability amplitudes appearing at the higher frequencies. For the modulation indices, we find 8.4\,% at 22\,GHz, 9.3\,% at 43\,GHz, and 15.5\,% at 86\,GHz. The radio spectrum is inverted between 22 and 86\,GHz, suggesting inhomogeneous synchrotron self-absorption with a turnover frequency at or above 86\,GHz. The radio spectral index correlates with the flux density, which is harder (more inverted spectrum) when the source is brighter. The average source size does not appear to be variable over the 10-day observing interval. However, we see a tendency for the sizes of the minor axis to increase with increasing total flux, whereas the major axis remains constant. Towards higher frequencies, the position angle of the elliptical Gaussian increases, indicative of intrinsic structure, which begins to dominate the scatter broadening. At cm-wavelength, the source size varies with wavelength as λ2.12±0.12\lambda^{2.12\pm0.12}, which is interpreted as the result of interstellar scatter broadening. After removal of this scatter broadening, the intrinsic source size varies as λ1.4...1.5\lambda^{1.4 ... 1.5}. The VLBI closure phases at 22, 43, and 86\,GHz are zero within a few degrees, indicating a symmetric or point-like source structure. In the context of an expanding plasmon model, we obtain an upper limit of the expansion velocity of about 0.1\,c from the non-variable VLBI structure. This agrees with the velocity range derived from the radiation transport modeling of the flares from the radio to NIR wavelengths.}Comment: 14pages, 14 Figures, Accepted for publication in A&

    Coordinated multi-wavelength observations of Sgr A*

    Get PDF
    We report on recent near-infrared (NIR) and X-ray observations of Sagittarius A* (Sgr A*), the electromagnetic manifestation of the ~4x10^6 solar masses super-massive black hole (SMBH) at the Galactic Center. The goal of these coordinated multi-wavelength observations is to investigate the variable emission from Sgr A* in order to obtain a better understanding of the underlying physical processes in the accretion flow/outflow. The observations have been carried out using the NACO adaptive optics (AO) instrument at the European Southern Observatory's Very Large Telescope (July 2005, May 2007) and the ACIS-I instrument aboard the Chandra X-ray Observatory (July 2005). We report on a polarized NIR flare synchronous to a 8x1033 erg/s X-ray flare in July 2005, and a further flare in May 2007 that shows the highest sub-flare to flare contrast observed until now. The observations can be interpreted in the framework of a model involving a temporary disk with a short jet. In the disk component flux density variations can be explained due to hot spots on relativistic orbits around the central SMBH. The variations of the sub-structures of the May 2007 flare are interpreted as a variation of the hot spot structure due to differential rotation within the disk.Comment: 15 pages, 7 figures, contribution for the conference "The Universe under the Microscope" (AHAR 2008), to be published in Journal of Physics: Conference Series by Institute of Physics Publishin

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog
    corecore